4.1 - 4.2 Exponential and Logarithmic Functions

Tim Busken

Graduate T.A. Department of Mathematics Dynamical Systems and Chaos San Diego State University

April 9, 2011

3 N 4

Definition (Exponential Function)

An exponential function with base a is a function of the form

$$f(x)=a^{x},$$

where a and x are real numbers and

- x is the independent VARIABLE of the function; and
- a is a number FIXED CONSTANT such that a > 0 and $a \neq 1$.

Examples:

$$f(x) = 2^{x} \qquad g(x) = 10^{x}$$
$$h(x) = \left(\frac{1}{2}\right)^{x} \qquad w(x) = \left(\frac{113}{10}\right)^{x}$$

The exponential function $f(x) = a^x$ is only defined for a > 1 and 0 < a < 1, and the graph of an exponential function can only exhibit two types of behavior:

- exponential growth (if a > 1), or
- 2 exponential decay (if 0 < a < 1).

伺 と く ヨ と く ヨ と

Compound Interest Formula If a principal P (dollars) is invested for t years at an annual rate r, and it is compounded n times per year, then the amount A, or ending balance, is given by

$$A = P\left(1 + \frac{r}{n}\right)^{n \cdot t}$$

Example: If \$23,200 dollars is invested at an interest rate of 7%, find the value of the investment at the end of 5 years if the interest is compounded monthly.

Soln: P = 23,200, r = 7% = 0.07, n = 12, and t = 5. The expected amount in the account after 5 years is

Tim Busken

$$A = P\left(1 + \frac{r}{n}\right)^{n \cdot t} = 23,200\left(1 + \frac{0.07}{12}\right)^{12 \cdot 5} = \$32,888.91$$

- 4 回 ト - 4 回 ト

Suppose now that \$1 is invested at 100% interest for 1 year (no bank would pay this). The preceding formula becomes a function A defined in terms of the number of compounding periods n:

$$A(n) = \left(1 + \frac{1}{n}\right)^{r}$$

п	$A(n) = \left(1 + \frac{1}{n}\right)^n$
1 (compounded annually)	\$2.00
2 (compounded semiannually)	\$2.25
3	\$2.370370
4 (compounded quarterly)	\$2.441406
5	\$2.488320
100 (compounded annually)	\$2.704814
365 (compounded daily)	\$2.714567
8760 (compounded hourly)	\$2.718127

As *n* gets larger A(n) better approximates the number *e*,

Definition (The irrational number "e")

 $e \approx 2.7182818284...$

Remember that "e" is a number. We can use e to construct the exponential growth function $f(x) = e^x$.

- 4 同 6 - 4 三 6 - 4 三 6

3

Definition (The irrational number "e")

 $e \approx 2.7182818284...$

Moreover *e* has the multiplicative inverse $e^{-1} = 1/e \approx 0.36787944117...$ We can use e^{-1} to construct the exponential decay function $f(x) = e^{-x}$.

伺 と く ヨ と く ヨ と

Continuous Compounding Formula If a principal P is invested for t years at an annual rate r compounded continuously, then the amount A, or ending balance, is given by

$$A = P \cdot e^{r \cdot t}$$

Example: If \$23,200 dollars is invested at an interest rate of 7%, find the value of the investment at the end of 5 years if the interest is compounded *continuously*.

Soln: P = 23,200, r = 7% = 0.07, and t = 5. The expected amount in the account after 5 years is

Tim Busken

$$A = 23,200 \cdot e^{0.07 \cdot 5} = \$32,922.37$$

Theorem (Exponential Equality)

For a > 0 and a \neq 1,

if
$$a^{x_1} = a^{x_2}$$
, then $x_1 = x_2$

also

if
$$x_1 = x_2$$
, then $a^{x_1} = a^{x_2}$

Example: Solve
$$\left(\frac{2}{3}\right)^x = \frac{9}{4}$$
 for x.

Soln: Try to use the above theorem.

$$\left(\frac{2}{3}\right)^{x} = \frac{9}{4} = \left(\frac{3}{2}\right)^{2}$$

or

$$\left(\frac{2}{3}\right)^x = \left(\frac{2}{3}\right)^{-2}$$
 since $\left(\frac{3}{2}\right)^2 = \left(\frac{2}{3}\right)^{-2}$

Then by the theorem on exponential equality, we must have that x = -2.

Consider the exponential function $f(x) = 2^x$. Like all exponential functions, f is one to one. Can a formula for $f^{-1}(x)$ be found? Using what we learned in section 2.5 on inverse functions:

1. Replace f(x) with y: $y = 2^x$ 2. Interchange x and y: $x = 2^{y}$ 3. Solve for y: y = the exponent to which we raise 2 get x. 4. Replace y with $f^{-1}(x)$: $f^{-1}(x) =$ the exponent to which we raise 2 get x. $f(x) = a^x$ Y AXIS $(x) = \log_a(x)$ -22 X AXIS

We define a new symbol to replace the words "the exponent to which we raise 2 get x"

 $\log_2(x)$, read "the logarithm, base 2 of x" or "log, base 2, of x," means "the exponent to which we raise 2 get x."

So, if $f(x) = 2^x$, then $f^{-1}(x) = \log_2(x)$. Note that $f^{-1}(8) = \log_2(8) = 3$, because 3 is the exponent to which we raise 2 get 8.

Examples:

- $\log_2(32) = 5$, because 5 is the exponent to which we raise 2 get 32.
- $\log_2(1) = 0$, because 0 is the exponent to which we raise 2 get 1.

A B > A B >

э

Definition (Logarithmic Function)

For a > 0 and $a \neq 1$, the logarithmic function with base a is denoted as $f(x) = \log_a(x)$, where

$$y = \log_a(x) \iff a^y = x$$

- Note that $\log_a(1) = 0$ for any base a, because $a^0 = 1$ for any base a.
- There are two bases that are used more frequently than others; they are 10 and e.
- The notation log₁₀(x) is abbreviated log(x) and log_e(x) is abbreviated ln(x). These are called the common logarithmic function and the natural logarithmic function, respectively.

ヨッ イヨッ イヨッ

The functions of $y = a^x$ and $y = \log_a(x)$ for a > 0 and $a \neq 1$ are inverse functions.

- So, the graph of y = log_a(x) is a reflection about the line y = x of the graph of y = a^x.
- The graph of $y = a^x$ has the x-axis as its horizontal asymptote,
- while the graph of y = log_a(x) has the y-axis as its vertical asymptote.

Solution: If $y = \log_5(x)$ then $5^y = x$. We can find ordered pairs that are solutions by choosing y values and computing the x values.

<i>x</i> , or 5 ^{<i>y</i>}	у
	0
	1
	2
	-1
	-2

• • = • • = •

Example: Graph $y = \log_5(x)$

Solution: If $y = \log_5(x)$ then $5^y = x$. We can find ordered pairs that are solutions by choosing y values and computing the x values.

For $y = 0$ $y = 5^0 = 1$	<i>x</i> , or 5 ^{<i>y</i>}	y
For $y = 0, x = 5^{-1} = 1$.	1	0
For $y = 1, x = 5^2 = 5$.	5	1
$F_{y} = 2, x = 5 = 25.$	25	2
For $y = -1, x = 5^{-2} = \frac{1}{5}$.	$\frac{1}{5}$	-1
For $y = -2, x = 5^{-2} = \frac{1}{25}$.	$\frac{1}{25}$	-2
For $y = -2$, $x = 5^{-2} = \frac{3}{25}$.	$\frac{\frac{1}{5}}{\frac{1}{25}}$	$-1 \\ -2$

The preceding table of values shows the following:

Properties of the Logarithmic Function $f(x) = \log_a(x)$

 f(x) is an increasing function for a > 1 and a decreasing function whenever 0 < a < 1.

- The x-intercept of the graph of f is (1, 0).
- The graph has the *y*-axis as a vertical asymptote.
- The domain of f is $(0,\infty)$, and the range of f is $(-\infty,\infty)$.
- The functions $f(x) = \log_a(x)$ and $f(x) = a^x$ are inverse functions.

Definition

Consider the function g defined by

 $g(x) = a \cdot f(x - c) + d$ where a, c, and d are real numbers.

Then

- **(**) g(x) is the "generalized" child graph of parent graph f(x).
- **2** c represents the horizontal translation of f.
- a reflection/magnification
- d represents the vertical translation of f.

Definition (Multiple Transformations Graphing Algorithm)

Consider the function g defined by

 $g(x) = a \cdot f(x - c) + d$ where a, c, and d are real numbers.

In order to graph g(x) it is recommended to take the following steps:

- Identify and graph the parent graph f(x), of g(x).
- **2** (c) Translate (shift) f horizontally, i.e. apply $f(x \pm c)$.
- (a) Apply the Reflection/magnification.
- (d) Translate (shift) f vertically.

Note: If you are asked to graph, for example, $f(x) = -2\sqrt[3]{x+1} - 2$, then you should rename f(x) and give it the new name of g(x). Then find g's parent graph f(x).

Use translations to graph: $g(x) = -2 \log_5(x+1) - 1$

Solution: First identify and graph the parent graph $f(x) = \log_5(x)$, then apply the theory on graphical translations.

Step 2: Apply the horizontal shift. Graph: $g_1(x) = \log_5(x+1) = f(x+1)$. Shift every point of the parent graph one unit left (horizontally) (NOTE: the vertical asymptote (VA) shifts one unit left to x = -1)

Use translations to graph: $g(x) = -2 \log_5(x+1) - 1$

Step 2: Apply the horizontal shift. Graph: $g_1(x) = \log_5(x+1) = f(x+1)$. Shift every point of the parent graph one unit left (horizontally) (NOTE: the vertical asymptote (VA) shifts one unit left to x = -1)

Step 3: Apply the reflection/magnification. Graph: $g_2(x) = -2\log_5(x+1) = -2 \cdot f(x+1)$. Now shift the points on the graph in step 2 by multiplying the y coordinate of each point by -2.

Use translations to graph: $g(x) = -2\log_5(x+1) - 1$

Step 3: Apply the reflection/magnification. Graph: $g_2(x) = -2\log_5(x+1) = -2 \cdot f(x+1)$. Now shift the points on the graph in step 2 by multiplying the *y* coordinate of each point by -2.

Step 4: Apply the vertical shift. Graph: $g(x) = -2\log_5(x+1) - 1 = -2 \cdot f(x+1) - 1$. Translate each point on the graph in step 3 vertically downwards. Use translations to graph: $g(x) = -2 \log_5(x+1) - 1$

Step 4: Apply the vertical shift. Graph: $g(x) = -2\log_5(x+1) - 1 = -2 \cdot f(x+1) - 1$. Translate each point on the graph in step 3 vertically downwards.

 $g(x) = -2\log_5(x+1) - 1 = -2 \cdot f(x+1) - 1.$

Theorem (One-to-One Property of Logarithms)

For a > 0 and $a \neq 1$,

if $\log_a(x_1) = \log_a(x_2)$, then $x_1 = x_2$.

3

Definition

Since exponential functions are one-to-one functions, they are invertible. The inverses of the exponential functions are called **logarithmic functions**.

- If f(x) = a^x, then f⁻¹(x) = log_a(x) for the inverse of the base-a exponential function.
- We read log_a(x) as "log of x base a," and we call the expression log_a(x) a logarithm.
- In general, log_a(x) is the exponent that is used on the base a to obtain the value x.
- Since the exponential function f(x) = a^x has domain (-∞,∞) and range (0,∞), the logarithmic function f(x) = log_a(x) has domain (0,∞) and range (-∞,∞).
- So, there are no logarithms of negative numbers or zero.

Image: A image: A