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Definition (Exponential Function)

An exponential function with base a is a function of the form

f (x) = ax ,

where a and x are real numbers and

x is the independent VARIABLE of the function; and

a is a number FIXED CONSTANT such that a > 0 and a 6= 1.

Examples:

f (x) = 2x g(x) = 10x

h(x) =

(

1

2

)x

w(x) =

(

113

10

)x

Tim Busken 4.1 - 4.2 Exponential and Logarithmic Functions



−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

 

 

(0, 1)

y = (1.5)x

y = 4x

y = 10x

y = 35x

Horizontal
Asymptote
y = 0

x

y

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

 

 

(0, 1)

y =

(

1

10

)x

y =

(

1

4

)x

y =

(

1

2

)x

y =

(

3

4

)x

Horizontal
Asymptote
y = 0

x

y

a > 1 0 < a < 1

The exponential function f (x) = ax is only defined for a > 1 and
0 < a < 1, and the graph of an exponential function can only
exhibit two types of behavior:

1 exponential growth (if a > 1), or

2 exponential decay (if 0 < a < 1).
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Compound Interest Formula
If a principal P (dollars) is invested for t years at an annual
rate r, and it is compounded n times per year, then the

amount A, or ending balance, is given by

A = P

(

1 +
r

n

)n·t

Example: If $23,200 dollars is invested at an interest rate of 7%,
find the value of the investment at the end of 5 years if the interest
is compounded monthly.

Soln: P = 23, 200, r = 7% = 0.07, n = 12, and t = 5. The
expected amount in the account after 5 years is

A = P

(

1 +
r

n

)n·t

= 23, 200

(

1 +
0.07

12

)12·5

= $32, 888.91

note: we use a calculator to find the answer here!
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Suppose now that $1 is invested at 100% interest for 1 year (no
bank would pay this). The preceding formula becomes a function
A defined in terms of the number of compounding periods n:

A(n) =

(

1 +
1

n

)n

n A(n) =

(

1 +
1

n

)n

1 (compounded annually) $2.00
2 (compounded semiannually) $2.25
3 $2.370370
4 (compounded quarterly) $2.441406
5 $2.488320
100 (compounded annually) $2.704814
365 (compounded daily) $2.714567
8760 (compounded hourly) $2.718127

As n gets larger A(n) better approximates the number e.
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Definition (The irrational number “e”)

e ≈ 2.7182818284...

Remember that “e ” is a number. We can use e to construct the
exponential growth function f (x) = ex .

x f (x)

-2.0 0.1353
-1.0 0.3679
0.0 1.0
1.0 2.7178
2.0 7.3891
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Definition (The irrational number “e”)

e ≈ 2.7182818284...

Moreover e has the multiplicative inverse
e−1 = 1/e ≈ 0.36787944117... We can use e−1 to construct the
exponential decay function f (x) = e−x .

x f (x)

-2.0 7.3891
-1.0 2.7178
0.0 1.0
1.0 0.3679
2.0 0.1353
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0
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IS (1,0)
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Continuous Compounding Formula
If a principal P is invested for t years at an annual rate r
compounded continuously, then the amount A, or ending

balance, is given by

A = P · er ·t

Example: If $23,200 dollars is invested at an interest rate of 7%,
find the value of the investment at the end of 5 years if the interest
is compounded continuously.

Soln: P = 23, 200, r = 7% = 0.07, and t = 5. The expected
amount in the account after 5 years is

A = 23, 200 · e0.07·5 = $32, 922.37

note: we use a calculator to find the answer here!
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Theorem (Exponential Equality)

For a > 0 and a 6= 1,

if ax1 = ax2, then x1 = x2

also

if x1 = x2, then ax1 = ax2

Example: Solve

(

2

3

)x

=
9

4
for x.

Soln: Try to use the above theorem.
(

2

3

)x

=
9

4
=

(

3

2

)2

or
(

2

3

)x

=

(

2

3

)

−2

since

(

3

2

)2

=

(

2

3

)

−2

Then by the theorem on exponential equality, we must have that
x = −2.
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Consider the exponential function f (x) = 2x . Like all exponential
functions, f is one to one. Can a formula for f −1(x) be found?
Using what we learned in section 2.5 on inverse functions:

1. Replace f (x) with y : y = 2x

2. Interchange x and y : x = 2y

3. Solve for y: y = the exponent to which we raise 2
get x.

4. Replace y with f −1(x): f −1(x) = the exponent to which we
raise 2 get x.

−6 −4 −2 0 2 4 6
−6
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0
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4
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X
IS

f(x) = ax

y = x

f−1(x) = loga(x)
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f(x) = ax

y = x

f−1(x) = loga(x)

We define a new symbol to replace the words “the exponent to
which we raise 2 get x”

log2(x), read “the logarithm, base 2 of x” or

“log, base 2, of x,” means “the exponent to

which we raise 2 get x.”

So, if f (x) = 2x , then f −1(x) = log2(x). Note that
f −1(8) = log2(8) = 3, because 3 is the exponent to which we raise
2 get 8.
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Examples:

log2(32) = 5, because 5 is the exponent to which we raise 2
get 32.

log2(1) = 0, because 0 is the exponent to which we raise 2
get 1.
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Definition (Logarithmic Function)

For a > 0 and a 6= 1, the logarithmic function with base a is
denoted as f (x) = loga(x), where

y = loga(x) ⇐⇒ ay = x

Note that loga(1) = 0 for any base a, because a0 = 1 for any
base a.

There are two bases that are used more frequently than
others; they are 10 and e.

The notation log10(x) is abbreviated log(x) and loge(x) is
abbreviated ln(x). These are called the common logarithmic
function and the natural logarithmic function, respectively.
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The functions of y = ax and y = loga(x) for a > 0 and a 6= 1 are
inverse functions.

So, the graph of y = loga(x) is a reflection about the line
y = x of the graph of y = ax .

The graph of y = ax has the x-axis as its horizontal
asymptote,

while the graph of y = loga(x) has the y-axis as its vertical
asymptote.
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Example: Graph y = log5(x)

Solution: If y = log5(x) then 5y = x . We can find ordered pairs
that are solutions by choosing y values and computing the x values.

x , or 5y y

0
1
2
−1
−2
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Example: Graph y = log5(x)

Solution: If y = log5(x) then 5y = x . We can find ordered pairs
that are solutions by choosing y values and computing the x values.

For y = 0, x = 50 = 1.
For y = 1, x = 51 = 5.
For y = 2, x = 52 = 25.

For y = −1, x = 5−1 = 1
5 .

For y = −2, x = 5−2 = 1
25 .

x , or 5y y

1 0
5 1
25 2
1
5 −1
1
25 −2

The preceding table of values shows the following:

log5(1) = 0
log5(5) = 1
log5(25) = 2
log5(

1
5 ) = −1

log5(
1
25 ) = −2
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Properties of the Logarithmic Function f (x) = loga(x)
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f (x) is an increasing function for a > 1 and a decreasing function
whenever 0 < a < 1.

The x-intercept of the graph of f is (1, 0).

The graph has the y-axis as a vertical asymptote.

The domain of f is (0,∞), and the range of f is (−∞,∞).

The functions f (x) = loga(x) and f (x) = ax are inverse functions.
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Definition

Consider the function g defined by

g(x) = a · f (x − c) + d where a, c , and d are real numbers.

Then

1 g(x) is the “generalized” child graph of parent graph f (x).

2 c represents the horizontal translation of f .

3 a reflection/magnification

4 d represents the vertical translation of f .
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Definition (Multiple Transformations Graphing Algorithm)

Consider the function g defined by

g(x) = a · f (x − c) + d where a, c , and d are real numbers.

In order to graph g(x) it is recommended to take the following
steps:

1 Identify and graph the parent graph f (x), of g(x).

2 (c) Translate (shift) f horizontally, i.e. apply f (x ± c).

3 (a) Apply the Reflection/magnification.

4 (d) Translate (shift) f vertically.

Note: If you are asked to graph, for example, f (x) = −2 3√x + 1 − 2, then you should rename f (x) and give it the
new name of g(x). Then find g ’s parent graph f (x).
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Use translations to graph: g(x) = −2 log5(x + 1)− 1

Solution: First identify and graph the parent graph f (x) = log5(x),
then apply the theory on graphical translations.

x , or 5y y

1 0
5 1
25 2
1
5 −1
1
25 −2
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Step 2: Apply the horizontal shift. Graph:
g1(x) = log5(x + 1) = f (x + 1). Shift every point of the parent
graph one unit left (horizontally) (NOTE: the vertical asymptote
(VA) shifts one unit left to x = −1)
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Use translations to graph: g(x) = −2 log5(x + 1)− 1

Step 2: Apply the horizontal shift. Graph:
g1(x) = log5(x + 1) = f (x + 1). Shift every point of the parent
graph one unit left (horizontally) (NOTE: the vertical asymptote
(VA) shifts one unit left to x = −1)

x , or 5y g1
0 0
4 1
24 2
−4

5 −1
−24

25 −2
−5 0 5
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Step 3: Apply the reflection/magnification. Graph:

g2(x) = −2 log5(x + 1) = −2 · f (x + 1). Now shift the points on the

graph in step 2 by multiplying the y coordinate of each point by −2.
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Use translations to graph: g(x) = −2 log5(x + 1)− 1

Step 3: Apply the reflection/magnification. Graph:
g2(x) = −2 log5(x + 1) = −2 · f (x + 1). Now shift the points on
the graph in step 2 by multiplying the y coordinate of each point
by −2.

x , or 5y g2
0 0
4 -2
24 -4
−4

5 2

−24
25 4
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Step 4: Apply the vertical shift. Graph:
g(x) = −2 log5(x + 1)− 1 = −2 · f (x + 1)− 1.Translate each
point on the graph in step 3 vertically downwards.
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Use translations to graph: g(x) = −2 log5(x + 1)− 1

Step 4: Apply the vertical shift. Graph:
g(x) = −2 log5(x + 1)− 1 = −2 · f (x + 1)− 1.Translate each
point on the graph in step 3 vertically downwards.

x , or 5y g3
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24 -5
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g(x) = −2 log5(x + 1)− 1 = −2 · f (x + 1)− 1.
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Theorem (One-to-One Property of Logarithms)

For a > 0 and a 6= 1,

if loga(x1) = loga(x2), then x1 = x2.
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Summary

Definition

Since exponential functions are one-to-one functions, they are
invertible. The inverses of the exponential functions are called
logarithmic functions.

If f (x) = ax , then f −1(x) = loga(x) for the inverse of the
base-a exponential function.

We read loga(x) as “log of x base a,” and we call the
expression loga(x) a logarithm.

In general, loga(x) is the exponent that is used on the base a
to obtain the value x.

Since the exponential function f (x) = ax has domain
(−∞,∞) and range (0,∞), the logarithmic function
f (x) = loga(x) has domain (0,∞) and range (−∞,∞).

So, there are no logarithms of negative numbers or zero.
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