# 4.1-4.2 Exponential and Logarithmic Functions 

Tim Busken

Graduate T.A.
Department of Mathematics
Dynamical Systems and Chaos
San Diego State University
April 9, 2011

## Definition (Exponential Function)

An exponential function with base $a$ is a function of the form

$$
f(x)=a^{x},
$$

where $a$ and $x$ are real numbers and

- $x$ is the independent VARIABLE of the function; and
- $a$ is a number FIXED CONSTANT such that $a>0$ and $a \neq 1$.

Examples:

$$
\begin{array}{cc}
f(x)=2^{x} & g(x)=10^{x} \\
h(x)=\left(\frac{1}{2}\right)^{x} & w(x)=\left(\frac{113}{10}\right)^{x}
\end{array}
$$



The exponential function $f(x)=a^{x}$ is only defined for $a>1$ and $0<a<1$, and the graph of an exponential function can only exhibit two types of behavior:
(1) exponential growth (if $a>1$ ), or
(2) exponential decay (if $0<a<1$ ).

## Compound Interest Formula

If a principal $P$ (dollars) is invested for $t$ years at an annual rate $r$, and it is compounded $n$ times per year, then the amount $A$, or ending balance, is given by

$$
A=P\left(1+\frac{r}{n}\right)^{n \cdot t}
$$

Example: If $\$ 23,200$ dollars is invested at an interest rate of $7 \%$, find the value of the investment at the end of 5 years if the interest is compounded monthly.

Soln: $P=23,200, r=7 \%=0.07, n=12$, and $t=5$. The expected amount in the account after 5 years is

$$
A=P\left(1+\frac{r}{n}\right)^{n \cdot t}=23,200\left(1+\frac{0.07}{12}\right)^{12.5}=\$ 32,888.91
$$

Suppose now that $\$ 1$ is invested at $100 \%$ interest for 1 year (no bank would pay this). The preceding formula becomes a function $A$ defined in terms of the number of compounding periods $n$ :

$$
A(n)=\left(1+\frac{1}{n}\right)^{n}
$$

| $n$ | $A(n)=\left(1+\frac{1}{n}\right)^{n}$ |
| :--- | :--- |
| 1 (compounded annually) | $\$ 2.00$ |
| 2 (compounded semiannually) | $\$ 2.25$ |
| 3 (compounded quarterly) | $\$ 2.370370$ |
| 4 | $\$ 2.441406$ |
| 5 (compounded annually) | $\$ 2.488320$ |
| 100 | $\$ 2.704814$ |
| 365 (compounded daily) | $\$ 2.714567$ |
| 8760 (compounded hourly) | $\$ 2.718127$ |

As $n$ gets larger $A(n)$ better approximates the number $e$,

## Definition (The irrational number "e")

## $e \approx 2.7182818284 \ldots$

Remember that " $e$ " is a number. We can use $e$ to construct the exponential growth function $f(x)=e^{x}$.

| $x$ | $f(x)$ |
| :---: | :---: |
| -2.0 | 0.1353 |
| -1.0 | 0.3679 |
| 0.0 | 1.0 |
| 1.0 | 2.7178 |
| 2.0 | 7.3891 |



## Definition (The irrational number "e")

## $e \approx 2.7182818284 \ldots$

Moreover $e$ has the multiplicative inverse
$e^{-1}=1 / e \approx 0.36787944117 \ldots$ We can use $e^{-1}$ to construct the exponential decay function $f(x)=e^{-x}$.

| $x$ | $f(x)$ |
| :---: | :---: |
| -2.0 | 7.3891 |
| -1.0 | 2.7178 |
| 0.0 | 1.0 |
| 1.0 | 0.3679 |
| 2.0 | 0.1353 |



## Continuous Compounding Formula

If a principal $P$ is invested for $t$ years at an annual rate $r$ compounded continuously, then the amount $A$, or ending balance, is given by

$$
A=P \cdot e^{r \cdot t}
$$

Example: If $\$ 23,200$ dollars is invested at an interest rate of $7 \%$, find the value of the investment at the end of 5 years if the interest is compounded continuously.

Soln: $P=23,200, r=7 \%=0.07$, and $t=5$. The expected amount in the account after 5 years is

$$
A=23,200 \cdot e^{0.07 \cdot 5}=\$ 32,922.37
$$

## Theorem (Exponential Equality)

For $a>0$ and $a \neq 1$,

$$
\text { if } a^{x_{1}}=a^{x_{2}} \text {, then } x_{1}=x_{2}
$$

also

$$
\text { if } x_{1}=x_{2} \text {, then } a^{x_{1}}=a^{x_{2}}
$$

Example: Solve $\left(\frac{2}{3}\right)^{x}=\frac{9}{4}$ for $x$.
Soln: Try to use the above theorem.

$$
\left(\frac{2}{3}\right)^{x}=\frac{9}{4}=\left(\frac{3}{2}\right)^{2}
$$

or

$$
\left(\frac{2}{3}\right)^{x}=\left(\frac{2}{3}\right)^{-2} \text { since }\left(\frac{3}{2}\right)^{2}=\left(\frac{2}{3}\right)^{-2}
$$

Then by the theorem on exponential equality, we must have that $x=-2$.

Consider the exponential function $f(x)=2^{x}$. Like all exponential functions, $f$ is one to one. Can a formula for $f^{-1}(x)$ be found? Using what we learned in section 2.5 on inverse functions:

1. Replace $f(x)$ with $y: \quad y=2^{x}$
2. Interchange $x$ and $y: \quad x=2^{y}$
3. Solve for $y$ :
$y=$ the exponent to which we raise 2 get x .
4. Replace $y$ with $f^{-1}(x)$ : $f^{-1}(x)=$ the exponent to which we raise 2 get $x$.



We define a new symbol to replace the words "the exponent to which we raise 2 get $x$ "
$\log _{2}(x)$, read "the logarithm, base 2 of $x$ " or "log, base 2, of x," means "the exponent to which we raise 2 get $x$."

So, if $f(x)=2^{x}$, then $f^{-1}(x)=\log _{2}(x)$. Note that $f^{-1}(8)=\log _{2}(8)=3$, because 3 is the exponent to which we raise 2 get 8 .

## Examples:

- $\log _{2}(32)=5$, because 5 is the exponent to which we raise 2 get 32 .
- $\log _{2}(1)=0$, because 0 is the exponent to which we raise 2 get 1 .


## Definition (Logarithmic Function)

For $a>0$ and $a \neq 1$, the logarithmic function with base $a$ is denoted as $f(x)=\log _{a}(x)$, where

$$
y=\log _{a}(x) \Longleftrightarrow a^{y}=x
$$

- Note that $\log _{a}(1)=0$ for any base a, because $a^{0}=1$ for any base a.
- There are two bases that are used more frequently than others; they are 10 and e.
- The notation $\log _{10}(x)$ is abbreviated $\log (x)$ and $\log _{e}(x)$ is abbreviated $\ln (x)$. These are called the common logarithmic function and the natural logarithmic function, respectively.


The functions of $y=a^{x}$ and $y=\log _{a}(x)$ for $a>0$ and $a \neq 1$ are inverse functions.

- So, the graph of $y=\log _{a}(x)$ is a reflection about the line $y=x$ of the graph of $y=a^{x}$.
- The graph of $y=a^{x}$ has the $x$-axis as its horizontal asymptote,
- while the graph of $y=\log _{a}(x)$ has the $y$-axis as its vertical asymptote.


## Example: Graph $y=\log _{5}(x)$

Solution: If $y=\log _{5}(x)$ then $5^{y}=x$. We can find ordered pairs that are solutions by choosing $y$ values and computing the $x$ values.

| $x$, or $5^{y}$ | $y$ |
| :---: | :---: |
|  | 0 |
|  | 1 |
|  | 2 |
|  | -1 |
|  | -2 |

## Example: Graph $y=\log _{5}(x)$

Solution: If $y=\log _{5}(x)$ then $5^{y}=x$. We can find ordered pairs that are solutions by choosing $y$ values and computing the $x$ values.

$$
\begin{aligned}
& \text { For } y=0, x=5^{0}=1 \\
& \text { For } y=1, x=5^{1}=5 . \\
& \text { For } y=2, x=5^{2}=25 . \\
& \text { For } y=-1, x=5^{-1}=\frac{1}{5} . \\
& \text { For } y=-2, x=5^{-2}=\frac{1}{25} .
\end{aligned}
$$

| $x$, or $5^{y}$ | $y$ |
| :---: | :---: |
| 1 | 0 |
| 5 | 1 |
| 25 | 2 |
| $\frac{1}{5}$ | -1 |
| $\frac{1}{25}$ | -2 |

The preceding table of values shows the following:

$$
\begin{array}{ll}
\log _{5}(1) & =0 \\
\log _{5}(5) & =1 \\
\log _{5}(25) & =2 \\
\log _{5}\left(\frac{1}{5}\right) & =-1 \\
\log _{5}\left(\frac{1}{25}\right) & =-2
\end{array}
$$



## Properties of the Logarithmic Function $f(x)=\log _{a}(x)$




- $f(x)$ is an increasing function for $a>1$ and a decreasing function whenever $0<a<1$.
- The $x$-intercept of the graph of $f$ is $(1,0)$.
- The graph has the $y$-axis as a vertical asymptote.
- The domain of $f$ is $(0, \infty)$, and the range of $f$ is $(-\infty, \infty)$.
- The functions $f(x)=\log _{a}(x)$ and $f(x)=a^{x}$ are inverse functions.


## Definition

Consider the function $g$ defined by

$$
g(x)=a \cdot f(x-c)+d \quad \text { where } a, c, \text { and } d \text { are real numbers. }
$$

Then
(1) $g(x)$ is the "generalized" child graph of parent graph $f(x)$.
(2) $c$ represents the horizontal translation of $f$.
(3) a reflection/magnification
(9) $d$ represents the vertical translation of $f$.

## Definition (Multiple Transformations Graphing Algorithm)

Consider the function $g$ defined by

$$
g(x)=a \cdot f(x-c)+d \quad \text { where } a, c, \text { and } d \text { are real numbers. }
$$

In order to graph $g(x)$ it is recommended to take the following steps:
(1) Identify and graph the parent graph $f(x)$, of $g(x)$.
(2) (c) Translate (shift) $f$ horizontally, i.e. apply $f(x \pm c)$.
(3) (a) Apply the Reflection/magnification.
(3) (d) Translate (shift) $f$ vertically.

Note: If you are asked to graph, for example, $f(x)=-2 \sqrt[3]{x+1}-2$, then you should rename $f(x)$ and give it the new name of $g(x)$. Then find $g$ 's parent graph $f(x)$.

## Use translations to graph: $g(x)=-2 \log _{5}(x+1)-1$

Solution: First identify and graph the parent graph $f(x)=\log _{5}(x)$, then apply the theory on graphical translations.

| $x$, or $5^{y}$ | $y$ |
| :---: | :---: |
| 1 | 0 |
| 5 | 1 |
| 25 | 2 |
| $\frac{1}{5}$ | -1 |
| $\frac{1}{25}$ | -2 |



Step 2: Apply the horizontal shift. Graph:
$g_{1}(x)=\log _{5}(x+1)=f(x+1)$. Shift every point of the parent graph one unit left (horizontally) (NOTE: the vertical asymptote (VA) shifts one unit left to $x=-1$ )

## Use translations to graph: $g(x)=-2 \log _{5}(x+1)-1$

Step 2: Apply the horizontal shift. Graph:
$g_{1}(x)=\log _{5}(x+1)=f(x+1)$. Shift every point of the parent graph one unit left (horizontally) (NOTE: the vertical asymptote (VA) shifts one unit left to $x=-1$ )

| $x$, or $5^{y}$ | $g_{1}$ |
| :---: | :---: |
| 0 | 0 |
| 4 | 1 |
| 24 | 2 |
| $-\frac{4}{5}$ | -1 |
| $-\frac{24}{25}$ | -2 |



Step 3: Apply the reflection/magnification. Graph:
$g_{2}(x)=-2 \log _{5}(x+1)=-2 \cdot f(x+1)$. Now shift the points on the graph in step 2 by multiplying the $y$ coordinate of each point by -2 ,

## Use translations to graph: $g(x)=-2 \log _{5}(x+1)-1$

Step 3: Apply the reflection/magnification. Graph:
$g_{2}(x)=-2 \log _{5}(x+1)=-2 \cdot f(x+1)$. Now shift the points on the graph in step 2 by multiplying the $y$ coordinate of each point by -2 .

| $x$, or $5^{y}$ | $g_{2}$ |
| :---: | :---: |
| 0 | 0 |
| 4 | -2 |
| 24 | -4 |
| $-\frac{4}{5}$ | 2 |
| $-\frac{24}{25}$ | 4 |



Step 4: Apply the vertical shift. Graph:
$g(x)=-2 \log _{5}(x+1)-1=-2 \cdot f(x+1)-1$.Translate each point on the graph in step 3 vertically downwards.

## Use translations to graph: $g(x)=-2 \log _{5}(x+1)-1$

Step 4: Apply the vertical shift. Graph:
$g(x)=-2 \log _{5}(x+1)-1=-2 \cdot f(x+1)-1$. Translate each point on the graph in step 3 vertically downwards.


## Theorem (One-to-One Property of Logarithms)

For $a>0$ and $a \neq 1$, if $\log _{a}\left(x_{1}\right)=\log _{a}\left(x_{2}\right)$, then $x_{1}=x_{2}$.

## Definition

Since exponential functions are one-to-one functions, they are invertible. The inverses of the exponential functions are called logarithmic functions.

- If $f(x)=a^{x}$, then $f^{-1}(x)=\log _{a}(x)$ for the inverse of the base-a exponential function.
- We read $\log _{a}(x)$ as "log of $x$ base $a$," and we call the expression $\log _{a}(x)$ a logarithm.
- In general, $\log _{a}(x)$ is the exponent that is used on the base a to obtain the value $x$.
- Since the exponential function $f(x)=a^{x}$ has domain $(-\infty, \infty)$ and range $(0, \infty)$, the logarithmic function $f(x)=\log _{a}(x)$ has domain $(0, \infty)$ and range $(-\infty, \infty)$.
- So, there are no logarithms of negative numbers or zero.

